Тест по биологии «Биосферный уровень. Что образуется в результате фотосинтеза

💖 Нравится? Поделись с друзьями ссылкой

А. ускорение световых и темновых реакций фотосинтеза

Б. использование световой энергии для синтеза органических веществ

В. расщепление органических веществ до неорганических

Г. участие в реакциях синтеза белка на рибосомах

Какой из перечисленных процессов происходит в световую фазу фотосинтеза?

А. образование глюкозы Б. синтез АТФ

В. поглощение CO 2 Г. все перечисленное

Назовите в хлоропласте участок, где происходят реакции темновой фазы фотосинтеза

А. наружная мембрана оболочки Б. вся внутренняя мембрана оболочки

В. граны Г. строма

30. Об условиях жизни древесных растений в разные годы можно узнать по толщине

А. Коры Б. Пробки

В. Лубяных волокон Г. Годичных колец

31. В пробирке с раствором хлорофилла фотосинтез не происходит, так как для этого процесса необходим набор ферментов, расположенных на

А. Кристах митохондрий Б. Гранах хлоропластов

В. Эндоплазматической сети Г. Плазматической мембране

Какие почки развиваются на листьях и корнях цветковых растений?

А. Придаточные Б. Верхушечные В. Пазушные Г. Боковые

33. Источником углерода, используемого растениями в процессе фотосинтеза, служит молекула

А. Угольной кислоты Б. Углеводорода

В. Полисахарида Г. Углекислого газа

Для улучшения дыхания корней культурных растений необходимо

А. Проводить прополку сорняков

Б. Систематически поливать растения

В. Периодически рыхлить почву вокруг растения

Г. Периодически подкармливать растения минеральными удобрениями

35. Приспособление растений к уменьшению испарения воды – наличие

А. Устьиц на верхней стороне листа

Б. Большого числа листовых пластинок

В. Широких листовых пластинок

Г. Воскового налета на листьях

36. Видоизмененный подземный побег многолетних растений с утолщенным стеблем, почками, придаточными корнями и чешуевидными листьями – это

А. Главный корень Б. Корневище

В. Боковой корень Г. Корнеклубень

Подземный побег отличается от корня наличием у него



А. Вегетативных почек

Б. Зоны проведения

В. Зоны всасывания

Г. корневых волосков

38. Какие удобрения усиливают рост зеленой массы растений?

А. Органические Б. Азотные

В. Калийные Г. Фосфорные

39. Свойство органов растений изгибаться под влиянием силы земного притяжения называют

А. Гидротропизмом Б. Фототропизмом

В. Геотропизмом Г. Хемотропизмом

40. Внешним сигналом, стимулирующим наступление листопада у растений, служит

А. Увеличение влажности среды

Б. Сокращение длины светового дня

В. Уменьшение влажности среды

Г. Повышение температуры среды

41. Затопление ранней весной полей пшеницы талыми водами иногда приводит к гибели всходов, так как при этом нарушается процесс

А. Фотосинтеза из-за недостатка кислорода

Б. Дыхания из-за недостатка кислорода

В. Поглощения воды из почвы

Г. Испарения воды

Часть В

В1(выберите несколько верных ответов из шести)

Значение транспирации

А. регулирует газовый состав внутри листа

Б. способствует передвижению воды

В. обеспечивает привлечение опылителей

Г. улучшает транспорт углеводов

Д. регулирует температуру листьев

Е. снижает удельный вес листвы

В2(выберите несколько верных ответов из шести)

Корневой чехлик выполняет функции

А. обеспечивает отрицательный геотропизм

Б. обеспечивает положительный геотропизм

В. облегчает проникновение корня в почву

Г. запасает питательные вещества

Д. защищает активно делящиеся клетки

Е. участвует в транспорте веществ

В3. Выберите несколько верных ответов

В чем состоит значение фотосинтеза?

А. в обеспечении всего живого органическими веществами

Б. в расщеплении биополимеров до мономеров

В. в окислении органических веществ до углекислого газа и воды

Г. в обеспечении всего живого энергией

Д. в обогащении атмосферы кислородом, необходимым для дыхания

Е. в обогащении почвы солями азота

В4. Установите соответствие между наиболее важными процессами и фазами фотосинтеза

В5. Установите правильную последовательность процессов фотосинтеза

А. возбуждение хлорофилла

Б. синтез глюкозы

В. соединение электронов с НАДФ + и Н +

Г. фиксация углекислого газа

Д. фотолиз воды

В6. Выберите несколько верных ответов

Выберите процессы, происходящие в световую фазу фотосинтеза

А. фотолиз воды Б. синтез углеводов

В. фиксация углекислого газа Г. синтез АТФ

Д. выделение кислорода Е. гидролиз АТФ

В7. Выберите несколько верных ответов

В темновую фазу фотосинтеза в отличие от световой происходит

А. фотолиз воды

Б. восстановление углекислого газа до глюкозы

В. синтез молекул АТФ за счет энергии солнечного света

Г. соединение водорода с переносчиком НАДФ +

Д. использование энергии молекул АТФ на синтез углеводов

Е. образование молекул крахмала из глюкозы

В8. Выберите несколько верных ответов

Углекислый газ поступает в растения из воздуха, превращаясь с помощью лучистой энергии солнца в сложные, высокоэнергетические органические соединения, которыми питается животный мир. Животные, используя потенциальную энергию органических веществ, снова освобождают углекислый газ. Согласно современным представлениям, приведенное выше уравнение фотосинтеза можно изобразить в виде схемы:

Следовательно, фотосинтез состоит из двух сопряженных систем реакций: окисления воды до кислорода и восстановления углекислого газа водородом воды до полисахаридов.

Лист сверху и снизу покрыт бесцветной кожицей, малопроницаемой для газов кутикулой. Углекислый газ, который усваивается в процессе фотосинтеза, поступает в лист через устьица. На 1 см 2 поверхности листа на долю устьиц приходится лишь 1 мм 2 , остальная площадь - на непроницаемую кутикулу. Диффузия СО 2 в лист происходит очень интенсивно. Например, 1. см 2 листовой поверхности катальпы поглощает 0,07 см 3 СО 2 за 1 ч, а такая же поверхность раствора щелочи - 0,12-0,15 см 3 , или в 2 раза больше.

В процентах указаны траты поглощенной листом световой энергии на различные виды работ

Для процесса фотосинтеза имеют значение особенности строения листа. К верхней стороне листа прилегает палисадная ткань, клетки которой расположены перпендикулярно, плотно соприкасаются друг с другом и богаты хлоропластами. Палисадная паренхима является преимущественно ассимиляционной тканью. К нижнему эпидермису прилегает губчатая паренхима с рыхлорасположенными клетками и межклетниками. Это приспособление у растений имеет значение для лучшего проникновения газов в клетки (рис. 1).

Чтобы процесс фотосинтеза проходил непрерывно, клетки должны быть достаточно насыщены водой. В этих условиях устьица до определенной степени бывают открыты. При этом будут осуществляться транспирация, газообмен, листья будут снабжаться в достаточной мере углекислым газом, т.е. процесс фотосинтеза будет проходить нормально.

Лист пронизан проводящими пучками, которые обеспечивают отток из него продуктов ассимиляции, что очень важно для нормального течения процесса фотосинтеза, поскольку в клетках, переполненных продуктами ассимиляции, в частности крахмалом, фотосинтез угнетается и может совсем прекратиться.

Выращивание растений при искусственном освещении. Условия наилучшего использования электрического света.

Исследования показали, что на развитие растений в значительной мере влияет интенсивность и спектральный состав света. В связи с этим большой интерес представляют опыты В.И. Разумова, который доказал, что красный свет действует как естественное дневное освещение, а синий воспринимается растением как темнота. Если освещать растения короткого дня ночью красным светом, то они не зацветают; растения длинного дня в этих условиях зацветают раньше, чем в обычных. Освещение растений в ночное время синим светом не нарушает влияния темноты. Следовательно, длинноволновый свет воспринимается как дневной свет, а коротковолновый - как темнота. Таким образом, качественный состав света оказывает влияние на развитие растения.

Однако существует иной взгляд, а именно, что все световые лучи, если они достаточно интенсивны, воспринимаются растением как дневное освещение. Считают, что спектральный состав света в течение дня почти одинаковый. В значительной мере изменяется лишь его интенсивность - наименьшая утром и к вечеру и наибольшая в полдень.

Установлено, что свет люминесцентных ламп по спектральному составу сходен с солнечным светом, поэтому для выращивания растений при искусственном освещении используют именно эти лампы.

Светильники с люминесцентными лампами, преимущественно размещаются рядами, желательно параллельными стене с окнами или длинной стороне узкого помещения. Но в помещениях, предназначенных для растений, оптимальным является такое расположение светильников, при котором направление света приближается к направлению естественного света.

Необходимо помнить, что излишек света пагубно сказывается на растениях, процесс фотосинтеза приостанавливается, растения ослабевают и хуже переносят неблагоприятные условия. Наибольшую продолжительность светового дня переносит фасоль - до 12 часов.

31. В пробирке с раствором хлорофилла фотосинтез не происходит, так как для этого процесса необходим набор ферментов, расположенных на+

А. Кристах митохондрий Б. Гранах хлоропластов

В. Эндоплазматической сети Г. Плазматической мембране

32. Какие почки развиваются на листьях и корнях цветковых растений?+

А. Придаточные Б. Верхушечные В. Пазушные Г. Боковые

33. Источником углерода, используемого растениями в процессе фотосинтеза, служит молекула+

А. Угольной кислоты Б. Углеводорода

В. Полисахарида Г. Углекислого газа

34. Для улучшения дыхания корней культурных растений необходимо+

А. Проводить прополку сорняков

Б. Систематически поливать растения

В. Периодически рыхлить почву вокруг растения

Г. Периодически подкармливать растения минеральными удобрениями

35. Приспособление растений к уменьшению испарения воды – наличие-Г

А. Устьиц на верхней стороне листа

Б. Большого числа листовых пластинок

В. Широких листовых пластинок

Г. Воскового налета на листьях

36. Видоизмененный подземный побег многолетних растений с утолщенным стеблем, почками, придаточными корнями и чешуевидными листьями – это+

А. Главный корень Б. Корневище

В. Боковой корень Г. Корнеклубень

37. Подземный побег отличается от корня наличием у него+

А. Вегетативных почек

Б. Зоны проведения

В. Зоны всасывания

Г. корневых волосков

38. Какие удобрения усиливают рост зеленой массы растений?-Б

А. Органические Б. Азотные

В. Калийные Г. Фосфорные

39. Свойство органов растений изгибаться под влиянием силы земного притяжения называют+

А. Гидротропизмом Б. Фототропизмом

В. Геотропизмом Г. Хемотропизмом

40. Внешним сигналом, стимулирующим наступление листопада у растений, служит+

А. Увеличение влажности среды

Б. Сокращение длины светового дня

В. Уменьшение влажности среды

Г. Повышение температуры среды

41. Затопление ранней весной полей пшеницы талыми водами иногда приводит к гибели всходов, так как при этом нарушается процесс+

А. Фотосинтеза из-за недостатка кислорода

Б. Дыхания из-за недостатка кислорода

В. Поглощения воды из почвы

Г. Испарения воды

Часть В

В1(выберите несколько верных ответов из шести)

Значение транспирации+3

А. регулирует газовый состав внутри листа

Б. способствует передвижению воды

В. обеспечивает привлечение опылителей

Г. улучшает транспорт углеводов

Д. регулирует температуру листьев

Е. снижает удельный вес листвы

В2(выберите несколько верных ответов из шести)

Корневой чехлик выполняет функции+3

А. обеспечивает отрицательный геотропизм

Б. обеспечивает положительный геотропизм

В. облегчает проникновение корня в почву

Г. запасает питательные вещества

Д. защищает активно делящиеся клетки

Е. участвует в транспорте веществ

В3. Выберите несколько верных ответов

В чем состоит значение фотосинтеза?+2

А. в обеспечении всего живого органическими веществами

Б. в расщеплении биополимеров до мономеров

В. в окислении органических веществ до углекислого газа и воды

Г. в обеспечении всего живого энергией

Д. в обогащении атмосферы кислородом, необходимым для дыхания

Е. в обогащении почвы солями азота

В4. Установите соответствие между наиболее важными процессами и фазами фотосинтеза+6

В5. Установите правильную последовательность процессов фотосинтеза+5

А. возбуждение хлорофилла 1

Б. синтез глюкозы 5

В. соединение электронов с НАДФ + и Н + 3

Г. фиксация углекислого газа 4

Д. фотолиз воды 2

В6. Выберите несколько верных ответов

Выберите процессы, происходящие в световую фазу фотосинтеза+3

А. фотолиз воды Б. синтез углеводов

В. фиксация углекислого газа Г. синтез АТФ

Д. выделение кислорода Е. гидролиз АТФ

В7. Выберите несколько верных ответов +3

В темновую фазу фотосинтеза в отличие от световой происходит

А. фотолиз воды

Б. восстановление углекислого газа до глюкозы

В. синтез молекул АТФ за счет энергии солнечного света

Г. соединение водорода с переносчиком НАДФ +

Д. использование энергии молекул АТФ на синтез углеводов

Е. образование молекул крахмала из глюкозы

В8. Выберите несколько верных ответов-

Какие процессы вызывает энергия солнечного света в листе?

А. Образование молекулярного кислорода в результате разложения воды

Б. Окисление пировиноградной кислоты до углекислого газа и воды

В. Синтез молекул АТФ

Г. Расщепление биополимеров до мономеров

Д. Расщепление глюкозы до пировиноградной кислоты

Е. Образование атомарного водорода за счет отнятия электрона от молекулы воды хлорофиллом

В9. Выберите несколько верных ответов.

Какие функции в растительном организме выполняет лист?+3

А. Поглощение воды и минеральных веществ

Б. Синтез органических веществ из минеральных

В. Газообмена с окружающей средой

Г. Роста растения в длину и толщину

Д. Формирования тканей и органов

Е. Транспирации

Часть С

С1. (развернутый ответ)

Докажите, что корневище растений – видоизмененный побег

Корневище растений- это видоизмененный побег, потому что он имеет придаточные корни.

С2(краткий ответ)

Почему на лесных тропинках растения отсутствуют или сильно разрежены?

Потому что люди и животные, передвигающиеся по тропинкам, затаптывают растения.

С3(краткий ответ)

С какой целью при пересадке рассады капусты прищипывают кончик корня?

Кончики корня капусты прищипывают с целью увеличения роста придаточных корней капусты.

С4(краткий ответ)

Почему при выращивании растений необходимо рыхлить почву?

При выращивании растений необходимо рыхлить почву для того, чтобы обеспечить корням хороший доступ к влаге и кислороду.

С5(развернутый ответ)

Какую роль играют устьица в жизни растений

При помощи устьиц происходит газообмен листа с окружающей средой.

С6 (развернутый ответ)

Листопад в жизни растений имеет очень большое значение. В чем оно заключается?

Оно заключается в адаптации растений к изменениям климата. Уменьшается испарение воды, хлорофилл разрушается. Сброшенная листва перегнивает, образуя удобрения для деревьев.

С7(развернутый ответ) На спиле ствола древесного растения обычно хорошо заметны годичные кольца. Что по ним можно определить?

По годичным кольцам можно определить, сколько у дерева было вегетационных периодов и то, как изменялся климат за время его существования.

С8. (развернутый ответ) В чем заключается значение процесса фотосинтеза для жизни на Земле?

В результате фотосинтеза образуется кислород, необходимый для жизни людей и животных.

С9. (краткий ответ) В листьях растений интенсивно протекает процесс фотосинтеза. Происходит ли он в зрелых и незрелых плодах? Ответ поясните.

С10. В XVII веке голландский ученый Ван Гельмонт провел опыт. Он посадил небольшую иву в кадку с почвой, предварительно взвесив растение и почву, и только поливал ее в течение нескольких лет. Спустя 5 лет ученый снова взвесил растение. Его вес увеличился на 63,7 кг, вес почвы уменьшился всего на 0,06 кг. Объясните, за счет чего произошло увеличение массы растения, какие вещества из внешней среды обеспечили этот прирост.

С11. (развернутый ответ) Почему вспашка почвы улучшает условия жизни культурных растений?

С12 . (краткий ответ) Какие процессы обеспечивают передвижение воды и минеральных веществ по растению? Ответ поясните.

С13. (краткий ответ) Садоводы при пикировке рассады капусты прищипывают верхушку главного корня, а при размножении кустов смородины используют стеблевые черенки, на которых развиваются придаточные корни. Оба эти цветковых растения относятся к классу двудольных. Объясните, какой тип корневой системы будет у капусты, выросшей из этой рассады, а какой у смородины, выросшей из стеблевого черенка.


Ответы

вопрос ответ вопрос ответ вопрос ответ вопрос ответ вопрос ответ
Б Г Б Б Б
Б А А А
Г Г А Г
В Г Б В
Б Б Г Г
В Г А Б
А В Б А
Б А Б Б
Г В Г В
В А Г Б

В часть

вопрос ответ
В1 АБД
В2 БВД
В3 АГД
В4 АААБАА
В5 АДВГБ
В6 АГД
В7 БДЕ
В8 АВЕ
В9 БВЕ

С1. . 1. корневище имеет узлы, в которых находятся рудиментарные листья и почки;

2. на верхушке корневища находится верхушечная почка, определяющая рост побега;

3. от корневища отходят придаточные корни;

4. внутреннее анатомическое строение корневища сходно со стеблем;

С2. Постоянное вытаптывание приводит к уплотнению почвы (нарушению водного и воздушного режима корней) и угнетению растений

С3. Для увеличения числа боковых корней, что приводит к увеличению площади питания растений

С4. Чтобы улучшить дыхание корней и уменьшить испарение воды из почвы.

С5. Устьице – высокоспециализированное образование эпидермиса растений, состоящее из двух замыкающих клеток и межклетника (устьичной щели) между ними. Через устьице осуществляется транспирация и газообмен. Транспирация – испарение воды растением. Транспирация регулирует водный и температурный режим растения

С6. 1. обеспечивает экономию воды и питательных веществ, необходимых для переживания зимнего периода

2. Защищает растение от механических повреждений в зимнее время

3. освобождает от конечных продуктов обмена веществ, накопившихся в листьях.

С7. 1. Примерный возраст растения

2. Условия произрастания в разные периоды жизни

3. Расположение сторон света

С8. 1. Выделение свободного кислорода, необходимого для дыхания всех живых организмов

2. Образование органических веществ, необходимых для всех живых организмов

3. Преобразование солнечной энергии в энергию химических связей, доступную для всех живых организмов.

4. Создание озонового слоя, защищающего от губительного воздействия УФ- лучей

С9. 1. Фотосинтез происходит в незрелых плодах (пока они зеленые), так как в них имеются хлоропласты

2. По мере созревания хлоропласты превращаются в хромопласты, в которых фотосинтез не происходит

С10. 1. масса растений увеличивается за счет органических веществ, образующихся в процессе фотосинтеза

2. В процессе фотосинтеза используются вода и углекислый газ, которые поступают из внешней среды

С11. 1. Способствует уничтожению сорняков и ослабляет конкуренцию с культурными растениями.

2. Способствует снабжению растений водой и минеральными веществами

3. Увеличивает поступление кислорода к корням

С12. 1. Из корня в листья вода и растворенные в ней минеральные соли передвигаются по сосудам за счет транспирации, в результате которой возникает сосущая сила. 2. Восходящему току растения способствует корневое давление, которое возникает в результате постоянного поступления воды в корень за счет разницы концентрации веществ в клетках и окружающей среде

С13. 1. Тип корневой системы исходно у капусты и смородины (двудольных растений) стержневой.2. При пикировке капусты, после прищипки главный корень перестает расти в длину (так как удаляются зоны деления и роста) и идет развитие боковых и придаточных корней. При укоренении стеблевых черенков смородины развиваются придаточные корни. Таким образом корневая система в обоих случаях станет сходна с мочковатой (преимущественное развитие боковых и придаточных корней)

Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.

Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в . Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.

Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота - ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.

Заметка: Живые существа, которые зависят от других продуктов питания называются . Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются . Зеленые растения и водоросли - примеры автотрофов.

В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.

Определение фотосинтеза

Фотосинтез - это химический процесс, посредством которого растения, некоторые и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.


Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей - АТФ и НАДФН - для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные - несколько. Листовая пластинка - одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис - слой клеток, который является покровной тканью листа. Его главная функция - защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл - это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний - палисадный и нижний - губчатый.

  • Защитные клетки

Защитные клетки - специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода . Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

(Световая энергия показана в скобках, поскольку она не является веществом)

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • : обеспечивает структурную и механическую поддержку, защищает клетки от , фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • : обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • : действует как барьер, контролируя движение веществ в клетку и из нее.
  • : как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • : полость внутри клеточной цитоплазмы, которая накапливает воду.
  • : содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны - они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа - устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки ;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез - это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в ). Вся пища, которую мы едим, происходит от организмов, являющихся фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для , которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Содержание статьи

ЦИКЛ УГЛЕРОДА, круговорот углерода, – циклическое перемещение углерода между миром живых существ и неорганическим миром атмосферы, морей, пресных вод, почвы и скал. Это один из важнейших биогеохимических циклов, включающий множество сложных реакций, в ходе которых углерод переходит из воздуха и водной среды в ткани растений и животных, а затем возвращается в атмосферу, воду и почву, становясь снова доступным для использования организмами. Поскольку углерод необходим для поддержания любой формы жизни, всякое вмешательство в круговорот этого элемента влияет на количество и разнообразие живых организмов, способных существовать на Земле.

Источники и резервы углерода.

Основной источник углерода для живых организмов – это атмосфера Земли, где данный элемент присутствует в виде диоксида углерода (углекислого газа, СО 2). В течение многих миллионов лет концентрация СО 2 в атмосфере, по-видимому, существенно не менялась, составляя ок. 0,03% веса сухого воздуха на уровне моря. Хотя доля СО 2 невелика, его абсолютное количество поистине огромно – ок. 750 млрд. т. В атмосфере СО 2 переносится ветрами как в вертикальном, так и в горизонтальном направлениях.

Диоксид углерода присутствует в воде, где он легко растворяется, образуя слабую угольную кислоту Н 2 СО 3 . Эта кислота вступает в реакции с кальцием и другими элементами, образуя минералы, называемые карбонатами. Карбонатные породы, например известняк, находятся в равновесии с диоксидом углерода, который содержится в контактирующей с ними воде. Аналогичным образом количество СО 2 , растворенного в океанах и пресных водах, определяется его концентрацией в атмосфере. Общее количество растворенных и осадочных углеродсодержащих веществ оценивается примерно в 1,8 трлн. т.

Углерод в соединении с водородом и другими элементами является одним из основных компонентов клеток растений и животных. Например, в организме человека он составляет ок. 18% массы тела. Многочисленность и очень широкое распространение живых организмов не позволяют удовлетворительно оценить общее содержание в них углерода. Можно, однако, приблизительно оценить суммарное количество углерода, связываемого растениями, а также выделяемого в процессе дыхания растений, животных и микроорганизмов. Установлено, что зеленые растения поглощают в год ок. 220 млрд. т CO 2 . Почти такое же количество этого вещества выделяется в неорганическую среду в процессе дыхания всех живых организмов, а также в результате разложения и сгорания органических веществ.

При определенных условиях разложения и сгорания созданных живыми организмами веществ не происходит, что ведет к накоплению углеродсодержащих соединений. Так, например, древесина живых деревьев может быть на 3–4 тысячелетия надежно защищена от микробного разложения и от пожара корой, способной противостоять действию микробов и огня. Древесина же, попавшая в торфяное болото, сохраняется еще дольше. В обоих случаях связанный в ней углерод оказывается как бы в ловушке и надолго выводится из круговорота. В условиях, когда органическое вещество оказывается захороненным и изолированным от воздействия воздуха, оно разлагается только частично и содержащийся в нем углерод сохраняется. Если впоследствии в течение миллионов лет эти органические остатки подвергаются давлению вышележащих отложений и нагреванию за счет земного тепла, значительная часть его превращается в ископаемое топливо, например в каменный уголь или нефть. Ископаемое топливо образует природный резерв углерода. Несмотря на интенсивное его сжигание, начавшееся с 1700-х годов, неизрасходованными еще остаются примерно 4,5 трлн. т.

Фотосинтез.

Основной путь, посредством которого углерод из мира неорганического перемещается в мир живого, – это осуществляемый зелеными растениями фотосинтез. Данный процесс представляет собой цепь реакций, в ходе которых растения поглощают из атмосферы или воды диоксид углерода, связывая его молекулы с молекулами специального вещества – акцептора СО 2 . В ходе других реакций, идущих с потреблением солнечной (световой) энергии, происходит расщепление молекул воды и использование высвобождающихся ионов водорода и связанного СО 2 в синтезе богатых углеродом органических веществ, в том числе акцептора СО 2 .

На каждую молекулу СО 2 , которую поглощает растение, чтобы синтезировать органические вещества, выделяется молекула кислорода, образованная при расщеплении воды. Предполагается, что именно таким путем образовался весь свободный кислород атмосферы. Если бы процесс фотосинтеза на Земле внезапно прекратился и нарушился углеродный цикл, то, согласно имеющимся расчетам, весь свободный кислород исчез бы из атмосферы примерно за 2000 лет.

Другие реакции.

Зеленое растение использует углерод образуемых им органических веществ разными способами. Например, он может накапливаться в составе крахмала, запасаемого в клетках, или целлюлозы – основного структурного материала растений и питательного вещества для многих других организмов. И крахмал и целлюлоза усваиваются в качестве пищи только после расщепления на составляющие их 6-углеродные сахара (т.е. сахара, содержащие по шесть атомов углерода в молекуле). В отличие от крахмала – нерастворимого высокомолекулярного соединения – 6-углеродные сахара легко растворимы и, перемещаясь по растению, служат источником энергии и материалом для роста и обновления клеток, а также для их восстановления в случае повреждений. Проростки, например, расщепляют запасенные в семени крахмал и жиры, получая из них более простые органические вещества, используемые в процессе клеточного дыхания (для высвобождения их энергии) и для роста.

У животных поглощенная пища подвергается аналогичному процессу переваривания. Прежде чем ее основные компоненты могут быть усвоены, они должны быть преобразованы: углеводы – в 6-углеродные сахара, жиры – в глицерин и жирные кислоты, белки – в аминокислоты. Эти продукты переваривания служат животному источниками энергии, высвобождаемой при дыхании, а также строительными блоками, необходимыми для роста организма и обновления его компонентов. Подобно растениям, животные способны переводить питательные вещества в форму, удобную для запасания. Аналог крахмала у животных – это гликоген, образуемый из излишков 6-углеродных сахаров и накапливаемый в качестве энергетического резерва в печени и мышечных клетках. Избыток сахара может превращаться также в жирные кислоты и глицерин, которые вместе с такими же веществами, поступающими с пищей, используются для синтеза жиров, накапливаемых в ткани. Таким образом, процессы синтеза обеспечивают запасание богатых углеродом и связанной энергией веществ, что позволяет организму выживать в периоды нехватки пищи.

После своей смерти растения и животные становятся пищей для т.н. редуцентов – организмов, осуществляющих разложение органического вещества. Большая часть редуцентов представлена бактериями и грибами, клетки которых выделяют наружу, в свое непосредственное окружение, небольшие количества пищеварительной жидкости, расщепляющей субстрат, а затем потребляют продукты такого «переваривания». Как правило, редуценты имеют ограниченный набор ферментов и соответственно используют в качестве пищи и источника энергии только немногие типы органических веществ. Обычные дрожжи, например, перерабатывают только 6- и 12-углеродные сахара, содержащиеся в разрушенных клетках перезрелых фруктов или в густом (с мякотью) соке, полученном при их раздавливании. Однако при достаточной длительности воздействия разнообразных редуцентов все углеродсодержащие вещества растений или животных в конце концов разрушаются до диоксида углерода и воды, а высвобожденная энергия используется организмами, осуществляющими разложение. Многие искусственно синтезированные органические соединения тоже подвержены биологическому разрушению (биодеградации) – процессу, в ходе которого редуценты получают энергию и необходимый строительный материал, а в атмосферу выделяется углерод в форме диоксида углерода.

Рассказать друзьям